Hierarchical Convex NMF for Clustering Massive Data
نویسندگان
چکیده
We present an extension of convex-hull non-negative matrix factorization (CH-NMF) which was recently proposed as a large scale variant of convex non-negative matrix factorization or Archetypal Analysis. CH-NMF factorizes a non-negative data matrix V into two nonnegative matrix factors V ≈ WH such that the columns of W are convex combinations of certain data points so that they are readily interpretable to data analysts. There is, however, no free lunch: imposing convexity constraints on W typically prevents adaptation to intrinsic, low dimensional structures in the data. Alas, in cases where the data is distributed in a non-convex manner or consists of mixtures of lower dimensional convex distributions, the cluster representatives obtained from CH-NMF will be less meaningful. In this paper, we present a hierarchical CH-NMF that automatically adapts to internal structures of a dataset, hence it yields meaningful and interpretable clusters for non-convex datasets. This is also confirmed by our extensive evaluation on DBLP publication records of 760,000 authors, 4,000,000 images harvested from the web, and 150,000,000 votes on World of Warcraft guilds.
منابع مشابه
Modified Convex Data Clustering Algorithm Based on Alternating Direction Method of Multipliers
Knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering in which there is no need to be peculiar about how to select initial values. Due to properly converting the task of optimization to an equivalent...
متن کاملA Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملDeep Approximately Orthogonal Nonnegative Matrix Factorization for Clustering
Nonnegative Matrix Factorization (NMF) is a widely used technique for data representation. Inspired by the expressive power of deep learning, several NMF variants equipped with deep architectures have been proposed. However, these methods mostly use the only nonnegativity while ignoring task-specific features of data. In this paper, we propose a novel deep approximately orthogonal nonnegative m...
متن کاملConvex NMF on Non-Convex Massiv Data
We present an extension of convex-hull nonnegative matrix factorization (CH-NMF) which was recently proposed as a large scale variant of convex non-negative matrix factorization (CNMF) or Archetypal Analysis (AA). CH-NMF factorizes a non-negative data matrix V into two non-negative matrix factors V ≈ WH such that the columns of W are convex combinations of certain data points so that they are r...
متن کاملEnhanced clustering of biomedical documents using ensemble non-negative matrix factorization
Searching and mining biomedical literature databases are common ways of generating scientific hypotheses by biomedical researchers. Clustering can assist researchers to form hypotheses by seeking valuable information from grouped documents effectively. Although a large number of clustering algorithms are available, this paper attempts to answer the question as to which algorithm is best suited ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010